首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   7篇
  2021年   2篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   4篇
  2015年   4篇
  2014年   9篇
  2013年   9篇
  2012年   14篇
  2011年   13篇
  2010年   3篇
  2009年   4篇
  2008年   5篇
  2007年   7篇
  2006年   5篇
  2005年   6篇
  2004年   2篇
  2003年   7篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1998年   11篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1974年   1篇
  1955年   1篇
排序方式: 共有146条查询结果,搜索用时 15 毫秒
21.
Domain motions of S-adenosyl-l-homocysteine (AdoHcy) hydrolase have been detected by time-resolved fluorescence anisotropy measurements. Time constants for reorientational motions in the native enzyme were compared with those for enzymes where key residues were altered by site-directed mutation. Mutations M351P, H353A, and P354A were selected in a hinge region for motion between the open and closed forms of the enzyme, as identified in a previous normal-mode study [Wang et al. (2005) Domain motions and the open-to-closed conformational transition of an enzyme: A normal-mode analysis of S-adenosyl-l-homocysteine hydrolase, Biochemistry 44, 7228-7239]. In wild-type, substrate-free AdoHcy hydrolase (NAD(+) cofactor in each subunit), reorientational motions were detected on time scales of 10-20 and 80-90 ns. The faster motion is attributed to the domain motion, and the slower motion is attributed to the tumbling of the enzyme. The domain motion was also detected for the enzyme complexes E(NADH/3'-keto-adenosine) and E(NAD(+)/3'-deoxyadenosine) but was absent for the complex E(NADH/3'-keto-neplanocin A). The results indicate that AdoHcy hydrolase exists in equilibrium of open and closed structures, with the equilibrium shifted toward the more mobile open form for the substrate-free enzyme, E(NAD(+)), and for intermediates formed early in the catalytic cycle after substrate binding or formed late prior to product release, E(NAD(+)/ligand). However, the strong inhibitor neplanocin A upon binding undergoes oxidation, forming the complex E(NADH/3'-keto-neplanocin). For this complex, which is analogous to the enzyme complex with the central catalytic intermediate, the equilibrium was shifted toward the more rigid closed form. A similar pattern was observed for M351P and P354A mutants. In contrast, the domain motion could not be detected, either in the absence or presence of ligands or with the cofactor in either the oxidized or reduced state, for the H353A protein, suggesting that this mutation changes the hinge-bending dynamics of the enzyme.  相似文献   
22.
The purpose of this study was to investigate the prevalence of dietary supplement use among adolescent athletes. The project was also directed at identifying the sources these student-athletes used for acquiring information about dietary supplements. One hundred thirty nine high school athletes (99 males; 34 females; mean age = 15.8 +/- 1.19 years) volunteered to participate in this study. A 16-question anonymous survey instrument examined use of dietary supplements, reasons for use, type of sport participation, and sources of information regarding dietary supplements. Of the participants in this study, 22.3% (N = 31) reported currently taking dietary supplements. There was no relationship found between dietary supplement use and age. There were a significantly higher number of males reporting current dietary supplement use. Of those who reported to be currently taking dietary supplements, sports performance (N = 25) was the most reported reason for use. There were no significant differences found in reported dietary supplement use between any of the sports. Of the participants, 38.1% (N = 53) listed their coach as their best source of information on dietary supplements. The results of this study offer the current literature some additional insight into trends in supplement use among high school student athletes. Practical implications suggest that it may be necessary to ensure coaches have sufficient knowledge about dietary supplements so that adolescent athletes are receiving accurate information.  相似文献   
23.
24.
The ability to break symmetry and polarize through self-organization is a fundamental feature of cellular systems. A prevailing theory in yeast posits that symmetry breaking occurs via a positive feedback loop, wherein the adaptor protein Bem1 promotes local activation and accumulation of Cdc42 by directly tethering Cdc42GTP with its guanine nucleotide exchange factor (GEF) Cdc24. In this paper, we find that neither Bem1 nor the ability of Bem1 to bind Cdc42GTP is required for cell polarization. Instead, Bem1 functions primarily by boosting GEF activity, a role critical for polarization without actin filaments. In the absence of actin-based transport, polarization of Cdc42 is accomplished through Rdi1, the Cdc42 guanine nucleotide dissociation inhibitor. A mathematical model is constructed describing cell polarization as a product of distinct pathways controlling Cdc42 activation and protein localization. The model predicts a nonmonotonic dependence of cell polarization on the concentration of Rdi1 relative to that of Cdc42.  相似文献   
25.
26.
Theory predicts deterministic and stochastic factors will contribute to community assembly in different ways: Environmental filters should regulate those species that establish in a particular area resulting in the ecological requirements of species being the primary driver of species distributions, while chance and dispersal limitation should dictate the likelihood of species reaching certain areas with the ecology of species being largely neutral. These factors are specifically relevant for understanding how the area and isolation of different habitats or islands interact to affect community composition. Our review of the literature found few experimental studies have examined the interactive effect of habitat area and isolation on community assembly, and the results of those experiments have been mixed. We manipulated the area and isolation of rock “islands” created de novo in a grassland matrix to experimentally test how deterministic and stochastic factors shape colonizing animal communities. Over 64 weeks, the experiment revealed the primacy of deterministic factors in community assembly, with habitat islands of the same size exhibiting remarkable consistency in community composition and diversity, irrespective of isolation. Nevertheless, tangible differences still existed in abundance inequality among taxa: Large, near islands had consistently higher numbers of common taxa compared to all other island types. Dispersal limitation is often assumed to be negligible at small spatial scales, but our data shows this not to be the case. Furthermore, the dispersal limitation of a subset of species has potentially complex flow‐on effects for dictating the type of deterministic factors affecting other colonizing species.  相似文献   
27.
Zhou C  Slaughter BD  Unruh JR  Eldakak A  Rubinstein B  Li R 《Cell》2011,147(5):1186-1196
During yeast cell division, aggregates of damaged proteins are segregated asymmetrically between the bud and the mother. It is thought that protein aggregates are cleared from the bud via actin cable-based retrograde transport toward the mother and that Bni1p formin regulates this transport. Here, we examined the dynamics of Hsp104-associated protein aggregates by video microscopy, particle tracking, and image correlation analysis. We show that protein aggregates undergo random walk without directional bias. Clearance of heat-induced aggregates from the bud does not depend on formin proteins but occurs mostly through dissolution via Hsp104p chaperon. Aggregates formed naturally in aged cells also exhibit random walk but do not dissolve during observation. Although our data do not disagree with a role for actin or cell polarity in aggregate segregation, modeling suggests that their asymmetric inheritance can be a predictable outcome of aggregates' slow diffusion and the geometry of yeast cells.  相似文献   
28.
29.
Cytochrome c oxidase subunit II (COII), encoded by the mitochondrial genome, exhibits one of the most heterogeneous rates of amino acid replacement among placental mammals. Moreover, it has been demonstrated that cytochrome c oxidase has undergone a structural change in higher primates which has altered its physical interaction with cytochrome c. We collected a large data set of COII sequences from several orders of mammals with emphasis on primates, rodents, and artiodactyls. Using phylogenetic hypotheses based on data independent of the COII gene, we demonstrated that an increased number of amino acid replacements are concentrated among higher primates. Incorporating approximate divergence dates derived from the fossil record, we find that most of the change occurred independently along the New World monkey lineage and in a rapid burst before apes and Old World monkeys diverged. There is some evidence that Old World monkeys have undergone a faster rate of nonsynonymous substitution than have apes. Rates of substitution at four-fold degenerate sites in primates are relatively homogeneous, indicating that the rate heterogeneity is restricted to nondegenerate sites. Excluding the rate acceleration mentioned above, primates, rodents, and artiodactyls have remarkably similar nonsynonymous replacement rates. A different pattern is observed for transversions at four-fold degenerate sites, for which rodents exhibit a higher rate of replacement than do primates and artiodactyls. Finally, we hypothesize specific amino acid replacements which may account for much of the structural difference in cytochrome c oxidase between higher primates and other mammals.   相似文献   
30.
Cytochrome c oxidase (COX) consists of 13 subunits, 3 encoded in the mitochondrial genome and 10 in the nucleus. Little is known of the role of the nuclear-encoded subunits, some of which exhibit tissue-specific isoforms. Subunit VIa is unique in having tissue-specific isoforms in all mammalian species examined. We examined relative evolutionary rates for the COX6A heart (H) and liver (L) isoform genes along the length of the molecule, specifically in relation to the tissue-specific function(s) of the two isoforms. Nonsynonymous (amino acid replacement) substitutions in the COX6AH gene occurred more frequently than in the ubiquitously expressed COX6AL gene. Maximum-parsimony analysis and sequence divergences from reconstructed ancestral sequences revealed that after the ancestral COX6A gene duplicated to yield the genes for the H and L isoforms, the sequences encoding the mitochondrial matrix region of the COX VIa protein experienced an elevated rate of nonsynonymous substitutions relative to synonymous substitutions. This is expected for relaxed selective constraints after gene duplication followed by purifying selection to preserve the replacements with tissue-specific functions.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号